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Abstract—Systems1,2 required to exhibit high operational 
reliability often rely on some form of fault protection to 
recognize and respond to faults, preventing faults’ 
escalation to catastrophic failures. Integrated System Health 
Management (ISHM) extends the functionality of fault 
protection to both scale to more complex systems (and 
systems of systems), and to maintain capability rather than 
just avert catastrophe. Forms of ISHM have been utilized to 
good effect in the maintenance phase of systems’ total 
lifecycles (often referred to as “condition-based mainte-
nance”), but less so in a “fault protection” role during actual 
operations. One of the impediments to such use lies in the 
challenges of verification, validation and certification of 
ISHM systems themselves. This paper makes the case that 
state-of-the-practice V&V and certification techniques will 
not suffice for emerging forms of ISHM systems; however, 
a number of maturing software engineering assurance 
technologies show particular promise for addressing these 
ISHM V&V challenges.  
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1. INTRODUCTION 

There is increasing interest in Integrated System Health 
Management (ISHM) for space vehicles, including human-
rated space transportation systems [1], [2]. ISHM goes 
beyond fault protection (FP) and fault detection, isolation 
and recovery (FDIR) by monitoring and predicting system 
performance, diagnosing faults, and planning and even 
controlling vehicle behavior in the presence of faults and 
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other off-nominal scenarios. Future spacecraft will operate 
autonomously while orbiting the moon and planets for 
extended periods of time while their entire crew descends to 
the surface in a separate lander. Crew members and ground 
controllers will be required to communicate with the 
orbiting spacecraft and monitor its "vital signs" remotely. 
By way of contrast, during the Apollo era, one astronaut 
stayed with the "mother ship", while the lunar lander 
carrying two astronauts descended to the moon.  
 
The human-rating requirements for US spacecraft includes a 
“two fault-tolerance” requirement that it shall be able to 
detect, isolate and recover from two subsystem failures. By 
comparison, Apollo generally had only single fault 
tolerance. 

A major impediment to ISHM acceptance is the perceived 
inability to certify it for mission- and safety-critical systems: 
it is necessary to show that ISHM, in concert with the 
system it manages, indeed exhibits the required levels of 
reliability, and that ISHM cost-effectively increases the 
reliability of the entire system over the reliability of the 
underlying system without ISHM. Unlike other possible 
contexts for ISHM, in the spacecraft context it is infeasible 
to implement it and gather the evidence demonstrating its 
success over a long period of representative testing.  

The principal thesis of this paper is that ISHM faces 
significant V&V impediments: specifically, current state of 
the practice V&V and certification techniques do not scale 
up to the challenges that ISHM poses; however, there are 
emerging V&V technologies that address these challenges.  

In the more general context of critical software, the 
challenges posed by FAA-mandated certification of 
aerospace software were outlined several years ago [3]. A 
similar perspective on  this same issue is reported in [4]. 
V&V issues for advanced software technologies planned for 
a spacecraft’s use were the topic of [5]. 

The next section summarizes ISHM software challenges. 
Then we discuss a variety of emerging V&V/certification 
technologies that are potentially enabling for ISHM and 
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ISHM-like systems. Section 3 describes development 
technologies that complement, and in some cases enable, 
the V&V technologies. Those sections provide evidence 
that current planning for ISHM should include planning for 
the maturation and application of these V&V technologies.  
Section 4 then discusses the interplay between development 
practices and V&V/certification challenges. Section 5 
provides our conclusions. Finally we provide an extensive 
bibliography documenting relevant research directions. 

2. ISHM SOFTWARE CHALLENGES 

There are several fundamental reasons that V&V of ISHM 
is difficult. First, most of the scenarios that ISHM is 
designed to manage are off-nominal. For these scenarios, it 
is hard to know that all the significant possible failure 
modes have been identified; and for any failure mode, its 
characteristics may not be well understood.  

Also, there is a large number of off-nominal scenarios. For 
example, if there are 1,000 possible failures, then there are 
potentially 1,000,000 pairs of such failures. Even if not all 
of these combinations are possible, the order-of-magnitude 
number of pairwise combinations grows as the square of the 
number of individual possible failures. 

Thus, ISHM systems are challenging in terms of the sheer 
number of their possible executions—they exhibit a large 
“state space”. Human rating requirements state that testing 
is required to “verify and validate the performance, security, 
and reliability of all critical software across the entire 
performance envelope”, which includes much of this state 
space.  

In addition, ISHM must not only detect and handle off-
nominal scenarios, but it must avoid “false alarms”. For 
example, ISHM needs to distinguish engine failure from 
failure of the sensors monitoring the engine’s health; the 
algorithms that perform this function must be extremely 
reliable, since they are in continuous operation.  

For a survey of the state of the practice for V&V of ISHM 
for space exploration, see [6], which discusses both the 
limitations on current ISHM V&V and the inability of 
current practice to scale up.  

The preceding challenges to V&V of ISHM are derived 
from the requirements levied on ISHM. In addition, there 
are challenges that arise from the way ISHM is designed 
and implemented. We discuss the second set of challenges 
in the next section, since the appropriate V&V technologies 
are often specific to design and implementation techniques.

Figure 1: ISHM Lifecycle Stages and V&V Challenges 
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3. EMERGING V&V TECHNOLOGIES 

The unusual role and nature of ISHM software raises both 
challenges for V&V and certification, and opportunities to 
amplify the efficacy of existing techniques, and to make use 
of some new and emerging V&V techniques that offer the 
promise of overcoming some of those key challenges. This 
section describes the origins of those opportunities, and 
gives some representative examples of emerging V&V 
techniques. 

ISHM Architecture 

Emerging forms of ISHM are likely to be architected using 
a combination  of hierarchical composition and model-based 
reasoning. In hierarchical composition, each subsystem will 
perform its own health management, and will propagate its 
status, and if necessary the faults it cannot manage locally, 
to the system of which it is a part. In model-based 
reasoning, a generic reasoning engine will operate over 
system-specific models. 

Hierarchical composition potentially favors V&V by 
allowing analysis itself to take advantage of the hierarchy, 
subdividing the V&V into manageable portions. V&V of 
this kind, often referred to as “hierarchical verification” or 
“compositional verification”, is an area of current interest 
within the V&V community. For a discussion of some of 
the issues, see [7]; for an example of a whole workshop 
focused on the topic, see [8]. Some of this work has been 
applied to NASA missions, e.g., [9]. Compositional 
verification, while potentially usable with a variety of 
verification techniques, often incorporates model checking 
(discussed separately below) to verify system designs, but 
the combination can also be applied to verify the source 
code as well. [10] discusses an application to a NASA 
robotic controller. 

 

Figure 2: Model-Based ISHM Architecture 

Model-based approaches to ISHM yield an ISHM system 
architecture divided into a generic, and therefore reusable, 

reasoning engine, and system-specific models as shown in 
Figure 2 (adapted from [11]). The reasoning engine itself is 
a non-trivial piece of software, and so the correctness of its 
implementation needs to be checked. However, since it will 
be reused from application to application, the effort it takes 
to check that implementation can be amortized over those 
multiple applications. An example of this is in [12], where 
validation is performed on properties of the core of a 
spacecraft’s fault protection system—the core “engine” 
orchestrates the handling of fault reports and the running of 
responses to handle them. 

Models Used in ISHM 

In order that ISHM can perform its reasoning (e.g., 
diagnose the cause of a fault from a set of symptoms), those 
models are designed to be machine-manipulable by the 
ISHM reasoning engine itself. V&V can also benefit from 
such machine-manipulable models. As stated in [13], 
“These models are often declarative and V&V analysts can 
exploit such declarative knowledge for their analysis”.  

Many of the emerging V&V techniques perform analysis – 
for V&V purposes – over the same kinds of models that 
ISHM utilizes. The adoption of those V&V techniques in 
traditional software settings has always been impeded by 
the need to construct such models by hand, from the various 
forms of system documentation intended for human, but not 
computer, perusal (e.g., requirements stated in paragraphs 
of English). Hand-construction of V&V models is 
expensive and time-consuming, and as a result their 
application has, in practice, been limited to only the most 
critical core elements of software and system designs (for an 
in-depth discussion, see [14]). A representative example 
drawn from the spacecraft fault protection domain is [15]’s 
use of “model checking” applied to the checkpoint and 
rollback scheme of a dually redundant spacecraft controller. 
In contrast, in model-based ISHM, such models are 
available early in the lifecycle, the ideal time to benefit from 
the results of analysis. Automatic translation from the form 
of ISHM-like models to the form of V&V models has been 
shown to be feasible, e.g., [16] illustrates such an approach 
in which they translate statecharts into the input form for the 
model checker SPIN (see Figure 3 below); [17] translate 
models in Livingstone (a model-based health management 
system [18]) into the model checker SMV [19] reports 
experiments to translate AI planner domain models into 
SMV, SPIN and Murphi model checkers, allowing a 
comparison of how the different systems would support 
specific types of validation tasks.  We discuss model 
checking in more detail later in this section. 
 

Controller 

Reasoning 
Engine 

Domain 
Model 

Spacecraft 

Commands Observations 
Model of 
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Figure 3: Translating ISHM Models for V&V 

Traditional techniques, such as testing, can also leverage the 
availability of such models. For example, [20] describes test 
automation (generation of the test cases, test drivers, and 
test result evaluation) utilizing models, demonstrated on the 
ill-fated Mars Polar Lander software design. Human-
conducted activities such as reviews and inspections may be 
well-suited to scrutiny of declarative models. 
 
Another source of opportunity offered by model-based 
reasoning is that the reasoning software can yield both its 
result (e.g., a diagnosis), and the chain of reasoning that led 
to that result. That chain of reasoning provides opportunities 
for cross-checking – not only checking that the result is 
correct, but also that it is correct for the right reasons (e.g., 
all the appropriate information was taken into account when 
arriving at its conclusion). For an example of this used 
during testing of a spacecraft experiment’s AI planner, see 
[21]. 

Diagnosability—An important property of ISHM systems is 
that they are adequate to support diagnosis of a specified 
class of faults. Often termed diagnosability, this means that 
using the  information available from sensors, the ISHM 
system is always able to distinguish whenever the system is 
in a fault state, and if so, disambiguate which fault state it is. 
Note that this is a property of a combination of the 
spacecraft system (what states it can exhibit), the sensors 
(what information about the system state they make 
available to ISHM), and the reasoning capabilities of the 
ISHM system.  For example, if among the spacecraft 
system’s possible behaviors there are two scenarios that 
lead to system states required to be distinguished, and yet 
the sensor information made available to the ISHM system 
is exactly the same for both those scenarios, then it would 
clearly be impossible for the ISHM system to make the 
distinction. For a discussion of diagnosability and 
approaches to its attainment, see [22] and [23]. An approach 
to verification of this property is described in [24].  
 
 

 
 

Figure 4: Architecture of a Diagnosis System 
(from [Cimatti  et al, 2003]) 

 
For V&V of the system as a whole, [25] and  [26] discuss 
an approach that focuses on advanced simulation of the 
actual software (as opposed to verification of the model 
only).  Concretely, this has been implemented in the 
Livingstone PathFinder (and Titan PathFinder) framework.  
Although this approach does not address diagnosability 
directly, it can catch diagnosis errors that may be traced 
back to diagnosability issues. They discuss an application of 
this approach to the main propulsion feed subsystem of the 
X-34 space vehicle. 
 
Model Checking—Earlier in this section we discussed 
applications of model checking to ISHM. Here we take a 
closer look at this technology. 

Model checking [27] is a method for formally verifying 
finite state systems.  Model checking can be applied to 
designs for both hardware and software, and, more recently, 
to application source code. Historically, model checking 
was initially applied to  communication protocol 
verification. Since then, particularly since the Intel Pentium 
bug, model checking has become a standard industrial 
verification technology for hardware, with hundreds of 
practitioners. 

In this paper, we focus on the application of model checking 
to software, a field that has developed rapidly over the past 
eight years. Model checking is especially aimed at the 
verification of reactive, embedded systems, that is, systems 
that are in constant interaction with their environments.  
ISHM is an example of such a system. These systems are 
extremely hard to test using traditional techniques, which 
usually require hand-generated test cases.   
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Figure 5: State space of an example concurrent  system 
with two activities 

One reason these systems are hard to test is the nondeter-
minism resulting from multithreading. In contrast to testing, 
model checking can verify such systems because it can 
explore the relevant part of the system’s state space, 
including nondeterministic branching.  

Figure 3, shows two very simple activities, each of which 
from time to time requests use of the same resource (this 
illustration is based on an example presented in [28]). Each 
activity transitions (boxes 1 and 2) between three states: 
“A” for Asleep (the activity isn’t doing anything), “R” for 
Requesting (the activity is preparing to use the shared 
resource), and “U” for Using (the activity is using the 
shared resource). A shared variable “Free”, which can take 
on values “Y” or “N”, is used as a semaphore by these two 
activities in such a way that they never are both using the 
shared resource at the same time.  

Each activity can be in one of three states, and the variable 
can hold one of two values, so in principle the state-space of 
their combination is 3x3x2 = 18 states. However, from the 
starting point of both activities asleep and Free=Y, not all of 
these 18 states are reachable (essentially because either 
activity’s transition from Requesting to Using can take 

place only if Free=Y). The lower box “interleaving of 1&2” 
shows the eight states that are reachable from one another. 

Model checking takes as input the activities themselves, and 
is able to completely explore the reachable state space. By 
so doing, it can answer questions such as “is it guaranteed 
that activities 1 and 2 are never both in the Using state at the 
same time?”, and “is it always possible to get back to the 
initial state (A1,A2,Y)?”. From visual scrutiny of the 
interleavings’ state-space it is obvious that the answer to 
both of these is “yes”. However, in realistic problems the 
state-space is vastly larger, so drawing this out by hand is 
infeasible, and traditional testing wouldn’t cover more than 
a small fraction of possible paths. Model checking 
nevertheless works in such situations by a combination of: 

• Very efficient representation of states and transi-
tion graphs (in some forms of model checking 
whole sets of states are manipulated at a time), util-
izing advances from the computer science field 
(hash tables, binary decision diagrams, ...), 

• Avoiding the need to explore all paths when the 
model checking algorithm can ascertain that the re-
sult down one path would be the same as the result 
down an already explored path, and 

• Abstraction – removal or approximation of “irrele-
vant” portions of the state space and/or the data 
within the states (e.g., substitution of integer values 
with simply negative/zero/positive). Abstraction is 
key to scaling model checking to larger problems, 
and is an area of active research. 

Although originally developed for finite state systems, 
model checking has been extended to work with at least 
some infinite state systems and also with real-time systems. 
 Model checking can verify simple properties such as 
reachability and freedom from deadlock (is deadlock 
avoided in the system), as well as more complex properties 
such as safety (the system never gets into a state with an 
undesired property such as exceeding a resource limit) or 
liveness (for example, every request eventually obtains a 
response). 

A key step in model checking is to describe the system in a 
state-based, formal way.  Typically, a model checker will 
require a special purpose system description language be 
used for this purpose. More recently, ways have been 
developed that allow model checking to work from 
programming languages such as Java, C, and C++, thus 
enabling model checking to be applied directly to source 
code.  

Another approach to easing the task of developing the state-
based model is to translate from an alternative state-based 
modeling representation already in use. Pioneering work in 
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this direction was to use StateMate® Statecharts as the 
starting point, and translate from them into the input 
language of a model checker  [29] and [30]; [31] did similar 
work starting from UML’s statechart diagrams. Translation 
to model checking notations is also evident in other state-
based notations in use in the formal methods community, 
e.g., SCR [32], and RSML [33]. 
 
Generally the system description is at a higher level of 
abstraction than the eventual source code.  Thus, some steps 
must be taken to ensure the description is consistent with 
the code.  

Once the system has been modeled in this way, model 
checkers can usually verify certain common properties such 
as reachability of all states in the model, freedom from 
deadlock and lack of race conditions. If  more complex 
properties are to be verified, the next step is to express them 
as specifications using some form of temporal logic.  This 
logic deals with properties of states and execution paths. 
For example, you can assert that a property is true in some 
future state or in all future states. 

Once the system is modeled and the temporal logic 
specifications are written, the model checker is applied.  It 
traverses the state space of the model and determines 
whether the specifications hold.  Very large state-spaces can 
often be traversed in minutes.  The technique has been 
applied to complex industrial systems, ranging from 
hardware to communication protocols to safety-critical 
plants and procedures. 

Tools for model checking—Important examples of model 
checkers are SPIN, NuSMV, VeriSoft, Java PathFinder and 
UPPAAL.  

Spin [34] is by far the most popular software model 
checker. It was designed to test the specifications of 
concurrent, distributed systems—specifically communica-
tions protocols [35], though it is applicable to any 
concurrent system.  It detects deadlocks, busy cycles, 
conditions that violate assertions, race conditions, and 
unwarranted assumptions about the relative speeds of 
processes. Spin was developed at Bell Labs in the formal 
methods and verification group starting in 1980.  Spin 
targets efficient software verification, not hardware 
verification.  It uses a high level language to specify 
systems descriptions (PROMELA - PROcess MEta 
LAnguage).  PROMELA is the closest model-checking 
specification language to a real programming language.  
Spin can be used as a full linear temporal logic (LTL) 
model checking system, supporting all correctness 
requirements expressible in linear time temporal logic, but it 
can also be used as an efficient on-the-fly verifier for more 
basic safety and liveness properties. Many of the latter 
properties can be expressed, and verified, without the use of 
LTL. 

Spin has been used to trace logic design errors in distributed 
systems design, such as operating systems, data communi-
cations protocols, switching systems, concurrent algorithms, 
and railway signaling protocols.  Spin  uses an “on-the-fly” 
approach where not all of the model needs to be in memory 
at once. The tool implements techniques to allow it to scale 
to handle real applications. 

An important limitation on the use of Spin with existing 
applications is the need to translate the applications to 
PROMELA. Several NASA applications have been 
translated to PROMELA and analyzed using Spin. NASA 
experience reports can be found in [36] and [37].  

Spin developers have implemented partial automatic 
translation to address this problem. The FeaVer tools [38] 
support translation of C to PROMELA, and are oriented 
toward applications in the maintenance phase of the 
lifecycle.  Spin and related tools and documentation are 
available at [39]. 

Another model checker, NuSMV (New Symbolic Model 
Verifier)[40], [41], is a symbolic model checker developed 
as a joint project among the Center for Scientific and 
Technological Research in Trent, Italy, Carnegie-Mellon 
University, the University of Genoa and the University of 
Trent.  The NuSMV system requires specifications to be 
written in computational tree logic (CTL). The input 
language of NuSMV is designed to allow the description of 
finite state systems that range from completely synchronous 
to completely asynchronous, and from the detailed to the 
abstract.  The language provides for modular hierarchical 
descriptions, and for the definition of reusable components. 
 CTL allows safety, liveness, fairness, and deadlock 
freedom to be specified syntactically. 

Most model checkers have not been specialized for handling 
real-time systems, where timing aspects are critical. 
UPPAAL[42] is a  model checker that supports real-time 
constraints and has been applied to verification of plan 
models [43], real-time controllers, and communication 
protocols [44]. 

Another approach to model checking is to apply the 
technique to the program itself. Java PathFinder (JPF) [45] 
is a model checker that takes Java byte code as its model. 
JPF has been under research and development for seven 
years in the Robust Software Engineering group at NASA 
Ames Research Center and has been applied to a number of 
NASA applications. These include not only Java but also 
Lisp and C++ applications that were hand-translated into 
Java. In each of these, it has found defects such as a time-
partitioning error (in the DEOS operating system) [37]; and 
most of the known, and some previously-unknown, 
concurrency errors in the Mars K9 Rover code. JPF can 
handle the full Java language, but is subject to engineering 
limitations such as the size of programs it can handle. In 
mid-2005, JPF was released under an Open Source license 
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[46]. JPF is also being extended to handle C++ and has 
recently been applied to a C++ flight software application 
for the Space Shuttle. As with the other major model 
checking technologies, there is an active research 
community developing JPF extensions, such as abstraction 
tools and heuristics for state space search. 

Other major research model checkers oriented toward 
programming languages include: 

• SLAM (for C) [47] 

• Verisoft (for C) [48] 

• BLAST (for C) [49] 

• dSPIN (Spin-based model checker for a subset of C++) 
[50] 

• Bandera  (analysis and abstraction tools for Java 
programs that derive models that can serve as input to 
variety of model checkers) [51]. 

Planning and Plan Execution Systems in ISHM 

In addition to diagnosing the health status of the systems 
they monitor, many ISHM systems will be required to plan 
the appropriate actions to recover from unhealthy states, and 
to execute those actions.  Model-based techniques will play 
an increasingly prominent role in the planning and 
execution stages, just as in the diagnosis [19]. Artificial 
Intelligence techniques for response planning have the same 
reasoning engine + models architecture, and so are prone to 
the same V&V challenges and opportunities as diagnosis 
systems. In addition, a plan execution system (“executive”) 
is needed to execute the plans. V&V of this software system 
must ensure that the execution of the commands and the 
response of the fault protection system conform to pre-
planned behavior. [52] discusses an executive built with 
plan verifiability in mind. [53] describes the results of 
applying several verification tools to an executive for a 
robotic Martian rover. 

Core Algorithms 

In addition to the verifying the AI components, V&V of 
ISHM will require assuring the correctness of its core 
algorithms (e.g., fault-tolerance, voting schemes); this kind 
of problem has long been appropriate for formal methods 
such as theorem proving (e.g., [54]; [55]; [56] ). 

General-purpose Program Verification Techniques 

A large number of general-purpose program verification 
techniques commonly applied to many forms of software 
are equally applicable to ISHM software. We do not attempt 
to summarize them in this paper. Here we list several 
general-purpose techniques that are seeing increased use, 

and that we believe are well-suited to aid in the verification 
of ISHM’s procedural code. 

Static Analysis—Static analysis detects defects by analyzing 
an application’s source code without actually executing it 
(e.g., by tracing through the program’s source-code 
statements to ascertain whether every use of a variable is 
preceded by its initialization). This means that static 
analysis can make determinations that apply to all possible 
executions (in contrast to testing, which typically explores 
only a subset of possible executions). 
 
Static analysis tools have been available almost as long as 
compilers; the earliest statically-detected defects were 
syntax errors reported by compilers. The capabilities of 
static analysis have grown significantly, and there are now 
static analyzers that can detect a wide range of program-
ming errors such as use of uninitialized variables, potential 
division by zero,  memory leaks, and pointer mismanage-
ment. A major area of research in static analysis is abstract 
interpretation [57]. This research has spawned tools, both 
research prototypes and commercial products, that attempt 
to enable more precise defect detection. A summary of 
currently available static analysis tools for C (including one 
based on abstract interpretation) can be found at [58]. 
 
Typically static analyzers detect only the most general 
classes of defects, that is, operations that are incorrect in 
any application. Nevertheless, such defects are common 
enough, and have sufficient potential to lead to failures, that 
reliable detection is important, particularly in aerospace 
applications—the well-known Arianne 501 loss was caused 
by an arithmetic overflow.  
 
One drawback of static analyzers is the typically high rate 
of false positives—non-defects that are reported as 
defects—and indeterminate items that the static analyzer 
cannot definitively assert to be defects. These must be 
filtered one-by-one by the developers themselves, a 
burdensome task. An emerging approach to reducing the 
frequency of such false positives and indeterminate items is 
to combine user feedback, machine learning and statistical 
analysis to reduce the error rate in static analysis [59]. A 
commercial product is available that incorporates some of 
these methods [60]. 
 
Efforts have been made to extend the capability of static 
analysis by providing information to the analyzer beyond 
what is available, or readily derivable, from the source code, 
for example, legal ranges of values for input variables. 
Given this additional information, static analyzers can both 
reduce the number of false positives, and expand the classes 
of errors it can detect. Usually this additional information 
must be provided by the programmer as annotations in the 
source code (usually in the form of inline comments that are 
understandable to the analyzer). The Java Modeling 
Language (JML) is an example of a language for writing 
specifications for Java programs. The aim is to provide a 
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specification language that is easy to use for Java 
programmers and that is supported by a wide range of tools 
for specification type-checking, runtime debugging, static 
analysis and verification. [61] is an overview of JML tools 
and applications. A static analyzer built around JML is the 
Extended Static Checker for Java (ESC/Java) [62]. 
ESC/Java 2 [63] attempts to integrate ESC-style static 
analysis with interactive verification to prove that a program 
is correct with respect to its JML specification. 

Runtime Analysis—Methods that can expand the 
information gained from individual test cases would be 
useful for testing of the numerous behaviors that ISHM 
systems can exhibit – an example of such a method is the 
recognition of inconsistent uses of shared variables in a test 
run, even if no classical race condition occurs within that 
run [64], [65]. [66] describes a similar approach to deadlock 
detection. 
 
Testing 

We have argued that traditional V&V methods, with their 
heavy reliance on testing, will not scale well to the nature of 
advanced ISHM. Nevertheless, testing will remain an 
indispensable element in the V&V arsenal, and means exist 
to amplify its efficacy. This was seen in the V&V of 
NASA’s “Remote Agent” – a spaceflight demonstration of 
AI technology used to automatically control a spacecraft. 
The V&V team’s approach to testing is described in [67]. 
The two areas their approach (and their experience applying 
it) emphasized were of careful selection of test cases, and 
judicious use of testbeds (with varying levels of fidelity, 
availability and speed). In their selection of test cases they 
applied the following techniques:  

• Informal, but expert reasoning about the places 
where a test case could be taken as representative 
of a neighborhood of similar tests (thus obviating 
the need to run those other tests),  

• Downsizing the test space based on reasoning that 
rules out cases not relevant to the mission plan (for 
example, discarding those that start from what 
would not be possible starting conditions in the ac-
tual mission profile),  

• Down-selection of a set of tests that, as a whole, 
exercise all combinations of nominal, single varia-
tions from nominal, and some (manually chosen as 
key) instances of multiple simultaneous variations 
from nominal, test cases 

• Metrics to double-check plausible notions of 
“coverage” that a test suite provides, and 

• Automation to speed up test running and checking 
of the results of testing. 

 
Software Reliability Engineering 

ISHM systems may be expected to be amenable to 
traditional software reliability engineering techniques based 
on measurements of defect discovery and removal during 

development and test: see [68], [69] for overviews of this 
field.  
 
It is plausible to expect that ISHM systems’ models 
themselves may also be amenable to measurement-based 
techniques, for example, by tracking the number of 
corrections made to the models as they undergo inspection, 
review, simulation, analysis, and, finally, part of the system 
testing process. 

4. DEVELOPMENT APPROACHES 

Many development factors have a direct effect on how 
readily the software product can be V&V’d. For example, a 
poor choice of development platform (such as a legacy 
programming language) may render many V&V 
technologies inapplicable.  
 
Since V&V typically accounts for 50 - 75% or more of the 
software lifecycle costs [70], development decisions should 
take into account the effect on these costs, even when initial 
lifecycle stage costs may be higher as a result. This is 
particularly true for long-lived components that can be 
expected to undergo maintenance for many years or even 
decades. 

Traceability of Requirements 

Standard development practices call for requirements and 
designs to be captured and scrutinized (e.g., via inspections 
and reviews), and for traceability among them to be 
maintained. Traceability often takes the form of a matrix, 
for example, a “requirements traceability matrix” (between 
requirements, and system functionality),  and a “require-
ments test matrix” (between requirements and test cases). 
Use of the latter helps promote the expression of 
requirements in a testable form, and helps ensure that the 
test plan covers all the requirements.  
 
Beyond these standard practices, the software engineering 
community is pursuing more formal (formal in the sense of 
“mathematical”, not formal in the sense of “formal 
inspections”) treatments of requirements traceability. [71] 
provides an overview of this field. These methods help by 
encouraging a more thorough elicitation of relevant 
information, and allowing the application of machine-
supported mechanisms to check the correctness of 
requirements decomposition (the traceability between 
requirements at one level of expression, and their equivalent 
at the next, more detailed, level). The relevance of this is 
highlighted by NASA’s Mars Polar Lander, thought to have 
failed because of a problem that traces back to incorrect 
mapping of system requirements to flight software 
requirements ([72], page 120). 
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V&V of Design Models 

Model-based design is an area of growing attention within 
both the software engineering community, and the broader 
systems engineering community. In the software 
engineering milieu, several early proponents of various 
modeling notations worked together to achieve a consensus 
in the form of the Unified Modeling Language (UML) [73], 
around which a great deal of work has since coalesced. 
UML’s “models” are expressed via diagrams, the complete 
set of which encompass the expression of structure, 
behavior and interaction of the modeled system. Of most 
relevance to ISHM’s V&V  challenges, UML’s behavioral 
models take the form of sequence diagrams, statechart 
diagrams (a variant of the Statechart concept originally 
propounded in [74]) and activity diagrams. Together, these 
provide a set of notations with a commonly agreed upon 
semantics. Multiple tool vendors now offer support for 
UML (e.g., development environments such as Rhapsody, 
Tau, etc.) 
 
In the systems engineering milieu, there an analogous trend 
towards more machine-manipulable representations of 
development artifacts and their interrelationships. For 
example, SysML [75] is a visual modeling language, in a 
similar spirit to UML, but designed for systems engineering 
applications. Other examples of tool-supported systems 
engineering notations include CORE®, from Vitech 
Corporation [76], and Cradle®, from 3SL [77]. 
 
The key point is that the adoption of model based design 
techniques is leading to the capture of much more of the 
design information in machine-manipulable formats. 
Analysis techniques that help V&V can take advantage of 
the availability of this information. In an earlier section we 
discussed how the analysis method of “model checking” can 
take advantage of existing uses of statechart notations as 
source for the formal state-model input it requires. The 
other notations of systems modeling are also amenable to 
analysis, notably checking consistency and completeness 
among the information captured in the multiple diagrams 
that document a system design [78], provided those 
diagrams are ascribed a sufficiently formal (mathematical) 
interpretation [79]. A further advantage they offer is early 
feedback through simulation of the models themselves, well 
in advance of the creation of production quality code. 
Typically, such feedback takes the form of scenarios 
(possible execution paths through the model); when 
scrutinized by domain experts, the concrete nature of such 
scenarios makes it is easy for the experts to recognize 
mistakes (e.g., “it shouldn’t have done that at that point...”). 
If coupled with some form of animation that renders visible 
the execution’s effects and actions, this becomes 
particularly effective and palatable [80], [81]. Just as there 
are many ways to exercise a piece of software during 
testing, there are many ways to exercise a model during 
simulation. Deciding which simulations to perform is an 
area of ongoing research: [82], [20]; [83] combines this 

with runtime monitoring, and describes an application to a 
NASA rover controller; [84] apply the approach to a fault 
protection system used on several NASA spacecraft. 
 
Prototyping Environment 

Prototypes are often constructed for flight software prior to 
the deployed implementation. The development environ-
ment for prototypes need not be the same as the one 
selected for building the deployed implementation.  In fact, 
re-use of the prototype as the production system is to be 
discouraged if the prototype is to be used as a test oracle (“a 
mechanism for determining behavioral correctness of test 
executions” [85])—the test oracle and the deployed 
implementation should not share the same defects.  
 
Often the selection of the development environment for the 
deployed implementation is driven by the lack of choice in 
deployment (runtime) platforms, the need to integrate with 
other flight applications and hardware, the need for highly 
optimized code, the infrastructure costs to switch to a new 
development environment, and risk aversion toward 
changing what has worked in the past.  
 
On the other hand, prototypes are developed with an 
emphasis on speed-of-development to demonstrate correct 
algorithms, show the requirements can be met, and help 
resolve issues with the requirements. For these purposes, the 
development environment for prototyping should support 
rapid development and a wide range of V&V tools, and the 
ability to quickly implement user interfaces that assist in 
human analysis, but that may not be needed in the target 
environment.  
  
The prototype should be portable among different platforms 
and its development environment should be vendor-
independent. To limit the V&V effort (as well as 
implementation effort), development should avoid 
implementing functionality that is already available in 
libraries (such as container classes, IO libraries, and user 
interface toolkits), and should avoid implementing 
functionality that is available in the runtime environment, 
including memory management and reflection. 
 
Coding Standards 

Regardless of the languages selected for ISHM implementa-
tion, observance of coding standards is critical for enabling 
V&V. For example, avoiding deeply nested pointers makes 
static analysis easier.  In object-oriented languages, multiple 
inheritance complicates program analysis. General 
(language-oriented) coding standards are well-known (for 
example, [86]). However, for mission- and safety-critical 
code, where there is a heavier burden on V&V, the 
“standard” coding standards should be augmented to 
encourage design and coding practices that are consistent 
with the requirements of V&V technologies. Fortunately 
there are “shallow” static analyzers that can detect most 
violations of coding standards [87] and some of these can 
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be extended to incorporate new standards. An extensive 
discussion of the risks in using the C++ language for safety 
critical systems, as well as mitigations for some of these 
risks, is provided in [88] and [89], which focus on defining 
a “safer” subset of C++ together with the use of coding 
standards, static analysis, testing tools, and manual design 
and code reviews. 
 
Aspect-Oriented Programming 

Our experience with object-oriented flight software for 
spacecraft is that characterizing and observing valid 
software behavior during testing can be very difficult. This 
is particularly true for software that performs situational 
awareness, where the limited outputs conceal a very large 
internal state space.  In addition, the programming language 
features that promote good design by hiding the internal 
state of objects from other objects in the system can limit 
what the test harness objects can see. An obvious solution is 
to integrate the test code into the objects so there is greater 
visibility. However, the result is that test code is spread 
around throughout the system and is more difficult to 
maintain and remove. 
 
Aspect-Oriented Programming (AOP) [90], [91] can be 
applied to obtain greater visibility into the internal state 
while at the same time avoiding proliferation of test code in 
the program’s source files[92]. Once the state properties of 
interest are identified, the software can be instrumented 
using AOP tools to monitor these properties at specified 
points in the program. By maintaining the instrumentation 
as aspects, it is possible to separately maintain the test code 
and easily insert it into new releases. The aspect code 
resides in its own set of source code files, and it is not 
necessary to modify the target application to support testing. 
This allows easily switching between the instrumented and 
uninstrumented code, or selecting arbitrary groups of 
instrumentations to be inserted. Again without proliferating 
test code in the target application, AOP tools provide 
visibility into the state of objects in the system under test. 
 

5. CONCLUSIONS 

ISHM software for spacecraft faces significant V&V 
challenges for several reasons:  most of the scenarios that 
ISHM is designed to manage are off-nominal; and there is a 
large number of off-nominal scenarios. Human rating 
requirements state that testing is required to “verify and 
validate the performance, security, and reliability of all 
critical software across the entire performance envelope”, 
which includes much of the ISHM software’s state space. In 
addition, ISHM must not only detect and handle off-
nominal scenarios, but it must reliably avoid “false alarms”, 
especially when the response to a false alarm may cause 
loss of mission or crew. In addition to these externally-
imposed requirements, the nature of ISHM software 
architecture, design and implementation poses its own 

challenges to V&V.  Traditional V&V practices generally 
do not scale up to handling these challenges.  
 
However, there are emerging V&V technologies that may 
address most aspects of these challenges. These include 
model-based reasoning to V&V ISHM models; plan 
execution systems developed with verification in mind; 
formal methods for verifying key algorithms; and general 
purpose program verification techniques.  
 
Regardless of the V&V techniques to be used, early 
development decisions can defeat effective V&V, and thus 
it is essential to plan for incorporating maturing V&V 
technologies and development technologies that have an 
impact on V&V costs. Even if specific V&V technologies 
are not yet certified, development should incorporate 
practices such as capturing requirements and designs in a 
machine-manipulable manner; ensuring traceability from 
software artifacts to requirements; and selecting prototyping 
environment that provides extensive support for emerging 
V&V technologies. 
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